

Dipole Regulation

Monday Meeting Talk Chuck Schmidt Nov. 3, 2003

- 1. Bruker Power Supplies
- 2. Dipole Magnets 45° and 90° dipoles
- 3. NMR
- 4. Regulation Loop

Bruker Power Supplies

- 25 V (8 to 15 V operation)
- 5 A (3.1 to 4.0 A operation)
- 100 ppm stability (10 ppm for 1 min) Operation at least this good
- 16 bit DAC/ADC (15 ppm) resolution)
- Least Significant Bit ~ 76 microamps
- Resolution: 76 uA / 3.2 A = 2.4 e-5

Dipole Magnets

• "Estimations on stability of WB beam line elements' currents"

A.Burov, S.Seletsky, A. Shemyakin 15-Oct-03 Based on max angle in the cooling section of 0.01 mrad.

Dipoles: B'dl ~ 7.0e-5 stability

• Steel: Thermal expansion ~ 1.1e-5 / °C

Operating values:

-	45 ⁰ dipoles		90 ⁰ dipoles	
Energy	Field	Current	Field	Current
(MeV)	(G)	(A)	(G)	(A)
3.50	262	3.2	395	3.1
4.35	320	4.0	481	3.9

- Field stability < ~300G x 7e-5 = 21e-3G or 20 mG
- Least Significant Bit ~76 uA ~6 mG
- 45° dipoles 90° bends:

Homogeneous field

NMR probe at inside radius of beam chamber on midplane

Resulting field errors for at NMR corrected with figure-8 coils

• 90° dipoles – 180° bend:

Gradient field – n = 0.5 ± 0.05

Special correction at pole edge for NMR

NMR Gaussmeter

• Range: 250 to 600 G

• 12 channels

• Water sample measuring the "spin-echo" signal

B= γ f Gyromagnetic ratio, γ =42.57639 MHz/T 300G=1.27729 MHz

- Regulation Loop Sensitivity:
 With field gradient less than 0.2G/cm
 <10 ppm
 With field gradient 0.4G/cm
 ~30 ppm
- Signal-to noise ~ B²
 260G marginal
 320G significantly better

Regulation Loop

Closes loop between NMR readings and Power Supply setting through software:

- Average 10 readings of each NMR channel (dipole reading). Maintain a running average of the last 10 field readings.
- If any reading exceeds 50 mG consider bad and ignore in average.
- If average exceeds +- 10 mG, increase or decrease setting of dipole PS by 1 LSB (~76 uA ~6 mG)

Console operations:

To use the regulating loop

1. Set the PS to desired value

• E:DYS01I BRUKER Bend PS 01 3.28 3.28 Amp ·

2. Enter expected field for NMR D/A and start NMR search by clicking first star and on.

• E:DYS01G Pelletron NMR PS 01 262.46 262.6238 Gaus ****

- 3. NMR will search (?) in sequence with other channel tasks and give field (A/D) if found. Field must be within ~10G of setting.
- 3. Adjust current of PS or NMR D/A setting until field and setting agree (within 10mG)

E:DYR01I	BRUKER Bend PS 05	3.12978	3.12978 A	mp ·
E:DYR01G	Pelletron NMR PS 05	395.03	395.0364 Ga	aus *••*

- 4. Click last star and PLUS to start regulation.
- 5. If all is well both stars will remain green. (If red, regulation is off.)
- 6. After 10-cycle average, if NMR setting and reading differ by +-10mG, PS will be corrected
- 7. If too large an error occurs (+-50 mG or more) the regulation may drop out and need restarting.
- To turn off regulation, interrupt last star and MINUS
- Small changes <50mG can be made by changing the NMR D/A setting while regulating.
- Large changes made through the PS may trip off the NMR reading and will require resetting the NMR.
- Dipole-NMR regulation should maintain the NMR field reading (A/D) to within +-10 mGauss of the desired field setting (D/A), ie. +-3.5 e-5 or 7.0e-5.